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Abstract

The impact of a single drop on a liquid ®lm is studied numerically by solving the Navier±Stokes equations for incompressible

¯uids in three dimensions. The extension dynamics of the splashing lamella is analyzed and compared with theoretical results from

the literature. Physically reasonable numerical results for the disintegration of the splashing lamella are obtained by applying

disturbances to the liquid ®lm and to the drop. It is shown that for the conditions considered here the Rayleigh instability is a

possible driving mechanism for the formation of cusps at the free rim of the splashing lamella. Ó 1999 Elsevier Science Inc. All

rights reserved.
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1. Introduction

The impact of a single drop on a liquid ®lm is a fascinating
¯uid mechanical phenomenon, which has attracted the atten-
tion of scientists since the last century. Famous photographs of
impacting drops are due to Edgerton, who used them to
demonstrate the capabilities of his stroboscopic ¯ash technique
(Edgerton and Killian, 1979). Several quantitative results for
splashing drops are available from the literature. Cossali et al.
(1997) determined the critical impact energy (critical Weber
number) separating the phenomena of deposition and splash-
ing for a wide parameter range. Furthermore, these authors
quanti®ed the number of ®ngers at the free rim of the splashing
lamella as well as the size of the secondary droplets emerging
from these ®ngers. A scaling law for the radial extension of the
lamella was deduced theoretically by Yarin and Weiss (1995),
who present also a rather complete summary of other results
for impacting drops. We will countercheck our numerical re-
sults and the above-mentioned theory concerning the extension
dynamics of the lamella. This will verify our simulations as
well as the theory.

The main purpose of this paper is to investigate the insta-
bility of the free rim, which leads to the formation of cusps,
®ngers and secondary droplets. While this instability is well
documented photographically by all of the authors cited
above, its underlying physical mechanisms are still not well
understood. Thus it is up to now not possible to predict the
number of cusps on a clear theoretical basis. There exist of
course several attempts to explain the rim instability. Cusp
formation at the free rim may be explained by considering the
rim as a torus subject to the Rayleigh instability. Yarin and
Weiss (1995) however conclude that the number of ®ngers
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Notation

T capillary stress tensor
S cross section area distribution
x, y, z Cartesian coordinates
D drop diameter
H dimensionless ®lm thickness, h/D
k dimensionless constant in Eq. (6)
T dimensionless time, tV/D
Dx, Dy, Dz dimensions of computational domain
R estimated radius of initial spot
h ®lm thickness
A integral of the wall ®lm velocity, Eq. (8)
V impact velocity
rl;b lamella radius at z� h
rl;r lamella radius at the free rim
n number of cusps or ®ngers
Oh Ohnesorge number, ll=�rqlD�1=2

p pressure
rrim radius of the free rim
t time
f volume fraction of the liquid
u velocity vector u� (u,v,w)
Vrim velocity of the rim relative to the sheet
We Weber number, qlDV 2=r
u z-averaged wall ®lm velocity

Greek
l dynamic viscosity
q density
r surface tension coe�cient
d thickness of the sheet
kmax wavelength with maximum growth rate

Subscripts
g gas
l liquid
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observed in experiments is not in agreement with this mecha-
nism. Consequently, they suggested another mechanism based
on the fact that a free rim always propagates normally to its
local con®guration. This behaviour will lead to the formation
of cusps, provided that amplitude and wavelength of initial rim
perturbations are of comparable magnitude and large com-
pared with the lamella thickness. Recently Guey�er and Za-
leski (1998) suggested a possible mechanism for the formation
of ®ngers in the very early phase of the impact, when surface
tension e�ects are negligible. It will be shown by a detailed
analysis of our numerical results that for the impact parame-
ters considered here the mechanism based on the Rayleigh
instability can explain the formation of cusps at intermediate
times of the splashing process.

The ®rst attempt to simulate the drop impact numerically
has been undertaken by Harlow and Shannon (1967). While
these simulations can be considered as a milestone of compu-
tational ¯uid dynamics, they are two-dimensional and thus not
suited to gain further insight into the mechanism of the rim
instability. Fortunately, the capacity of present-day super-
computers makes a three-dimensional simulation of drop im-
pacts with splashing possible. The numerical method used in
the present study to simulate splashing drops has been already
successfully applied to binary drop collisions (Rieber and
Frohn, 1997) and to collisions of drops with hot walls (Karl
et al., 1996).

2. Numerical method

The ¯ows considered here are described by the Navier±
Stokes equations for incompressible ¯uids with variable den-
sity and viscosity including free interfaces with surface tension

o�qu�
ot
�r � ��qu� 
 u� � ÿrp �r � l�ru� �ru�T� � r � T;

�1�
r � u � 0: �2�
The last term in the momentum equation accounts for surface
tension according to the conservative model of Lafaurie et al.
(1994), where T is the capillary stress tensor. Density and
viscosity are constant inside the gas and the liquid, but vary
discontinuously at the sharp interface separating liquid and
gas. In the volume-of-¯uid method (Hirt and Nichols, 1981)
density and viscosity are related to the volume fraction f of the
liquid by

q � qg � �ql ÿ qg�f ; �3�
l � lg � �ll ÿ lg�f : �4�
Advection of the liquid volume, and thus of the discontinuity,
is governed by the transport equation

of
ot
�r � �uf � � 0: �5�

In the framework of the volume-of-¯uid method all ¯ow dis-
continuities are captured in a straightforward way using con-
servative ®nite volume discretizations for Eqs. (1)±(5).
Speci®cally, we use a second-order conservative Godunov
projection method on a MAC-grid. A similar method on a
collocated grid has been described by Puckett et al. (1997). In
contrast to the method mentioned before, the formulation of
momentum advection is fully conservative. Conservative mo-
mentum advection turned out to be essential for a successful
simulation of splashing drops. This is not astonishing because
strict conservation ensures that ¯ow discontinuities move with

the correct speed (Vinokur, 1989). The computation of volume
¯uxes is based on a piecewise linear reconstruction of the in-
terface (Puckett et al., 1997). In this way the interface remains
sharp even for long time simulations. Like momentum and
volume fraction transport, surface tension and momentum
di�usion are treated explicitly, while the pressure is determined
by an implicit Poisson equation. Discontinuous coe�cients in
the Poisson equation due to the discontinuous density ®eld
cause standard multigrid solvers to fail. It has been found that
a cell-centred multigrid method with Galerkin coarse grid
approximation is rather insensitive to the density ratio and is
also very e�cient (Wesseling, 1988). Usually between two and
six multigrid V-cycles reduce the velocity divergence su�-
ciently. A ®xed Cartesian grid facilitated the parallelization of
the code for parallel supercomputers with distributed memory.

3. Results

The parameters of the splashing process taken into account
are ®lm thickness h, diameter D and impact velocity V of the
drop, density ql and viscosity ll of the liquid, surface tension r
and time t. A corresponding set of dimensionless parameters is
the Weber number We� qlDV 2=r, the Ohnesorge number
Oh� ll=�rqlD�1=2

, the dimensionless ®lm thickness H� h/D
and the dimensionless time T� tV/D. Time is zero at the ®rst
contact between drop and ®lm. The density and the viscosity
ratios are related to a water-air system at normal conditions,
thus ql=qg� 1000 and ll=lg� 40. For these ratios the gas ¯ow
has no signi®cant in¯uence on the solution. Physically rea-
sonable numerical results for the disintegration of the splashing
lamella are obtained by adding a random disturbance with
Gaussian distribution to the initial velocities of ®lm and drop in
each control volume. The standard deviation of the disturbance
is chosen rather high with up to 0.5V. Due to viscosity and
surface tension the kinetic energy of these disturbances de-
creases very fast, while being partially transformed into the
interfacial energy of small interface disturbances. Without these
disturbances, the disintegration of the lamella shows e�ects
which are not observed in experiments. In reality, such distur-
bances result from ¯ow details in the very early phase after
impact, which cannot be resolved within an overall simulation
of splashing drops due to their small length and time scales.

Only one quarter of the full problem is simulated using an
equidistant Cartesian mesh in a rectangular domain. Plane
z� 0 is identi®ed with the wall below the ®lm. At the two
planes of symmetry with x� 0 or y� 0 the number of cusps is
constrained to exactly one or exactly zero. Thus the number of
cusps is always even in our numerical simulations. This con-
straint should in¯uence the numerical result much less than the
inevitable lower grid resolution resulting from a simulation of
the full problem. The di�erent combinations of physical and
numerical parameters used for the simulations are summarized
in Table 1. The Ohnesorge number is given only for com-
pleteness; it indicates that viscosity has no signi®cant in¯uence
on the solution. The critical Weber number separating
splashing and deposition is about 200 for the values of H and
Oh considered here, thus all simulations should result in
splashing (Cossali et al., 1997).

Table 1

Parameters of splash simulations

Case We Oh H DT Symmetries Resolution

A 250 0.0014 0.116 3.5 2 3203

B 437 0.0016 0.1 3.5 2 2563

C 598 0.0014 0.116 3.5 2 3203
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Fig. 1 gives an overview of the temporal evolution of the
splashing process for three di�erent Weber numbers. The
droplet rings at T� 0.6 result from a torus which has been
ejected approximately at T� 0.2. The splashing lamella is ex-
panding radially, while on its top a rim of increasing diameter
is formed. This rim is subject to an instability which forms ®rst
cusps, then ®ngers and ®nally secondary droplets. In the high
Weber number case ®ngers exist already immediately after
impact. It should be noted that the formation of holes between
rim and lamella, which is visible for the two simulations at
higher Weber numbers, is not observed in experiments. Nev-
ertheless, it will be tried to gain as much insight as possible into
the splashing mechanism from the simulations.

Several conclusions may be drawn just from a qualitative
inspection of the results in Fig. 1. It is clearly visible that the
shape of the intact lamella and its diameter at the bottom
depend on time but not on the Weber number, whereas
quantities characterizing the shape of the rim on top of the
lamella depend on both time and Weber number: For a given
time, the diameter of the rim is decreasing with the Weber
number, while the number of cusps, of ®ngers and of sec-
ondary droplets increases with Weber number.

The dynamics of lamella and rim are quanti®ed with the
help of cross sections at y� 0 like those in Fig. 2. As a basis for
the following analysis, we determine the radial distance rl;b of
the bottom of the splashing lamella from these cross sections

as a function of time (Fig. 3). Yarin and Weiss (1995) have
shown theoretically that rl;b is asymptotically given by

rl;b

D
� kT 1=2 �6�

with

k � 2A
VD

� �1=2

: �7�

The dimensionless constant k depends solely on the velocity
distribution of the wall ®lm inside the splashing lamella. More
speci®cally, within the scope of the present paper, A is the
integral

A �
ZDx

0

�u�x� dx �8�

of the z-averaged radial velocity in the wall ®lm

�u�x� �
R h

0
f �x; y � 0; z�u�x; y � 0; z� dzR h

0
f �x; y � 0; z� dz

�9�

evaluated at some time not too short after impact.
In order to check not only k, but also the exponent 1/2 in

Eq. (6), we ®t a power law with two free parameters to the
discrete values of Fig. 3. The best ®ts are

Fig. 1. The shape of the splashing lamella as a function of We and T for cases A, B and C.
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case A: rl;b=D � 1:058T 0:459 �10�
and

case C: rl;b=D � 1:065T 0:444: �11�
As expected from Fig. 3 and from Eq. (6), the Weber number
does not in¯uence the radial extension of the splashing lamella.
Furthermore, the best ®ts essentially con®rm the square-root
dependency of rl;b on time in Eq. (6). Similar results have been
obtained by Guey�er and Zaleski (1998) for larger values of H.

It is interesting to compare Eqs. (10) and (11) with the as-
ymptotic theory, Eqs. (6) and (7). We evaluate the integral A at
T� 1.2. At this time A reaches its maximum value, while de-
creasing slowly for later times. In both cases we arrive at
k� 1.027, yielding the theoretical time law rl;b/D� 1.027 T 1=2.

The excellent agreement in Fig. 3 between this theoretical
prediction and the observed behaviour is remarkable, the more
as strictly speaking the theory applies only to the asymptotic
regime T � 1.

In order to calculate A without detailed knowledge of �u,
Yarin and Weiss choose the simple approximation �u�x� � V
for x < R, and �u�x�� 0 elsewhere. The radius R of the initial
spot produced by the impacting drop is estimated by the vol-
ume balance pR2h � pD3=6. This means that the initial spot
has the same (average) thickness as the surrounding undis-
turbed ®lm. The preceding estimates yield R/D� (6H)ÿ1=2 and
k� (3H/2)ÿ1=4.

In our numerical simulations �u reaches the asymptotic
shape of a ramp already at times around T� 1.2. At that time

Fig. 3. Radial distance rl;b of the bottom of the splashing lamella as a function of time. Comparison of numerical results for cases A and C with

theoretical results of Yarin and Weiss (1995). For reasons of clarity the ®tting curves of the numerical data, Eqs. (10) and (11), have been omitted.

Fig. 2. Vertical cross sections of the splashing lamella for cases A (left) and C (right). The time range for both cases is 0 < T < 3.
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�u�x� varies linearly between �u� 0 at the center of impact and
�u � V close to the splashing lamella. Additionally, at that time
rl;b/D meets the approximation R/D� 1.2 from above, as can
be seen from Fig. 3. Based on these observations we arrive at
the improved approximation

k � �6H�ÿ1=4
; �12�

which yields rl;b/D� 1.094 T 1=2 for both cases (see also Fig. 3).
In the remaining, possible driving mechanisms for the rim

instability are studied. Forgetting at the moment about more
complex mechanisms, the rim is considered as a torus with
major radius rl;r and minor radius rrim subject to the Rayleigh
instability alone. If the Rayleigh instability has any signi®cance
it should be possible to estimate the number of cusps on the
rim with the help of the wavelength of the fastest growing
disturbance kmax� 9.0147 rrim (Rayleigh, 1878). Because one
wavelength corresponds to one cusp, the number of cusps
should be simply

n � 2p
9:0147

rl;r

rrim

: �13�

The radius rl;r is determined from Fig. 2. The average value of
rrim is determined from the cross section area distribution
S�z� � RDxDy f �x; y; z� dx dy. S(z) shows always a characteristic
bump resulting from the free rim. The integral over this bump
is the volume of the free rim, from which we obtain rrim using
rl;r. The best ®ts of the four data sets (Figs. 4 and 5) based on
power laws are given in Table 2 together with the resulting
functions for the number of cusps.

For early times after impact, the number of cusps deter-
mined from Table 2 and the number of cusps counted in Fig. 1
show only a moderate quantitative agreement (Table 3).
Nevertheless, for T� 2.0 the agreement is excellent. In addi-
tion, not only the higher number of cusps for case C is pre-
dicted by Eq. (13), but also the slight decrease of the number
of cusps with time. Thus the present results indicate that the

Rayleigh instability is responsible for the formation of cusps at
intermediate times after impact.

In spite of this good agreement, the full rim disintegration
mechanism is presumably more complex. In the scenario de-
scribed above it is assumed that the number of cusps always
re¯ects immediately the actual rim con®guration. In reality,
however, ®ngers formed at the cusps will persist over longer
times. This might partially explain the discrepancies in Table 3.

Furthermore, the Rayleigh instability does not explain the
nonlinear growth of elongated ®ngers at the cusps. Indeed,
®nger formation seems to be governed more by the velocity of
the free rim relative to the lamella and thus by a mechanism
similar to that described by Yarin and Weiss (1995). For a
sheet with constant velocity and constant thickness d the mean
velocity of the rim relative to the sheet is (Taylor, 1959)

Vrim � 2r
qld

� �1=2

: �14�

Note that Vrim does not depend on time. While the authors of
the present paper were able to reproduce this velocity in their
numerical simulations with high accuracy, it was not possible
to generate ®ngers even for initial rim perturbations with large
wavelength and amplitude. Thus one may conclude that the
varying velocity and/or varying thickness of the actual
splashing lamella are responsible for ®nger formation at the
cusps. Especially the velocity varies considerably between
bottom and top of the lamella, because as a consequence of
Eq. (6) parts of the lamella ejected earlier move much faster
than parts ejected at later times. For sheets like the splashing
lamella Eq. (14) does no longer hold: Vrim is now a function of
the actual con®guration of rim and lamella. Consequently, the
mean velocity of the material collected in the cusps may be
di�erent from the mean velocity of the nearby rim. Indeed, in
the low Weber number case A of Fig. 1 inertia forces seem to
tear the ®ngers away from the rim.

Fig. 4. Radial distance rl;r of the rim on top of the lamella as a function of time for cases A and C.
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4. Conclusion

Physically reasonable numerical results for the disintegra-
tion of the splashing lamella have been obtained by disturbing
the liquid ®lm and the drop. The extension dynamics of the
splashing lamella show a good quantitative agreement with the
theoretical results of Yarin and Weiss (1995). It is shown that
for the splashes considered here the Rayleigh instability is
probably a driving mechanism for cusp formation at the free
rim. For later states of the rim instability, the varying thickness
and velocity of the splashing lamella might explain the growth
of ®ngers. This assumption should be proved by numerical
experiments extracting the basic mechanism.

Acknowledgements

This work was supported by the Deutsche Forschungs-
gemeinschaft DFG through grant Fr235/43-1. The authors
want to thank Dr. Marengo (University of Bergamo, Italy) for
his friendly cooperation.

References

Cossali, G.E., Coghe, A., Marengo, M., 1997. The impact of a

single drop on a wetted solid surface. Experiments in Fluids 22,

463±472.

Edgerton, H.E., Killian, R.J., 1979. Moments of Vision ± The

Stroboscopic Revolution in Photography. The MIT Press, Cam-

bridge, Massachusetts.

Guey�er, D., Zaleski, S., 1998. Formation de digitations lors de

l'impact d'une goutte sur un ®lm liquide (®nger formation during

droplet impact on a liquid ®lm). Comptes Rendus Acad. Sci. Paris

s�er. II, December 98.

Harlow, F.H., Shannon, J.P., 1967. The splash of a liquid drop. J.

Appl. Phys. 38, 3855±3866.

Hirt, C.W., Nichols, B.D., 1981. Volume of ¯uid (VOF) method

for the dynamics of free boundaries. J. Comp. Phys. 39 (1), 201±

225.

Karl, A., Anders, K., Rieber, M., Frohn, A., 1996. Deformation of

liquid droplets during collisions with hot walls: Experimental and

numerical results. Part. Part. Syst. Charact. 13, 186±191.

Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S., Zanetti, G.,

1994. Modelling merging and fragmentation in multiphase ¯ows

with SURFER. J. Comp. Phys. 113, 134±147.

Puckett, E.G., Almgren, A.S., Bell, J.B., Marcus, D.L., Rider, W.J.,

1997. A high-order projection method for tracking ¯uid interfaces

in variable density incompressible ¯ows. J. Comp. Phys. 130, 269±

282.

Rayleigh, L., 1878. On the instability of jets. Proc. Lond. Math. Soc.

10, 4±13.

Fig. 5. Radius of the rim on top of the splashing lamella rrim as a function of time for cases A and C.

Table 3

Comparison between the number of cusps determined from the func-

tions n in Table 2 and the number of cusps counted in Fig. 1

T 0.6 1.2 2.0 3.5

Table 2, case A 20 17 16 14

Fig. 1, case A 22 20 16 16

Table 2, case C 24 23 23 22

Fig. 1, case C 28 24 22 22

Table 2

Best ®ts for rl;r=D, rrim=D and resulting functions for the number of

cusps n

Case rl;r=D rrim=D n

A 1.22 T 0:406 0.0475 T 0:604 17.82 Tÿ0:198

C 1.15 T 0:441 0.0341 T 0:477 23.37 Tÿ0:036

460 M. Rieber, A. Frohn / Int. J. Heat and Fluid Flow 20 (1999) 455±461



Rieber, M., Frohn, A., 1997. Navier±Stokes simulation of droplet

collision dynamics. In: Proceedings of the Seventh International

Symposium on CFD, Beijing, China, pp. 520±525.

Taylor, G.I., 1959. The dynamics of thin sheets of ¯uid, iii. disintegration

of ¯uid sheets. Proc. R. Soc. London A 253, 313±321.

Vinokur, M., 1989. An analysis of ®nite-di�erence and ®nite-volume

formulations of conservation laws. J. Comp. Phys. 81, 1±52.

Wesseling, P., 1988. Cell-centred multigrid for interface problems. J.

Comp. Phys. 79, 85±91.

Yarin, A.L., Weiss, D.A., 1995. Impact of drops on solid surfaces: self-

similar capillary waves, and splashing as a new type of kinematic

discontinuity. J. Fluid Mech. 283, 141±173.

M. Rieber, A. Frohn / Int. J. Heat and Fluid Flow 20 (1999) 455±461 461


